STARTUP

Two-legged robot mimics human balance while running and jumping

The engineers at MIT and the University of Illinois at Urbana-Champaign have developed a new control system that may enable humanoid robots to do heavy lifting and other physically demanding tasks. The method to control balance in a two-legged, teleoperated robot is an essential step toward enabling a humanoid to carry out high-impact tasks in challenging environments.

The team’s robot, physically resembling a machined torso and two legs, is controlled remotely by a human operator wearing a vest that transmits information about the human’s motion and ground reaction forces to the robot. Through the vest, the human operator can both direct the robot’s locomotion and feel the robot’s motions. If the robot is starting to tip over, the human feels a corresponding pull on the vest and can adjust in a way to rebalance both herself and, synchronously, the robot.

“It’s like running with a heavy backpack — you can feel how the dynamics of the backpack move around you, and you can compensate properly,” says Joao Ramos, who developed the approach as an MIT postdoc. “Now if you want to open a heavy door, the human can command the robot to throw its body at the door and push it open, without losing balance.”

Ramos, who is now an assistant professor at the University of Illinois at Urbana-Champaign, has detailed the approach in a study appearing in Science Robotics. His co-author on the study is Sangbae Kim, associate professor of mechanical engineering at MIT.

Previously, Kim and Ramos built the two-legged robot HERMES (for Highly Efficient Robotic Mechanisms and Electromechanical System) and developed methods for it to mimic the motions of an operator via teleoperation, an approach that the researchers say comes with certain humanistic advantages.

“We realized in order to generate high forces or move heavy objects, just copying motions wouldn’t be enough, because the robot would fall easily,” Kim says. “We needed to copy the operator’s dynamic balance.”

Enter Little HERMES, a miniature version of HERMES that is about a third the size of an average human adult. The team engineered the robot as simply a torso and two legs, and designed the system specifically to test lower-body tasks, such as locomotion and balance. As with its full-body counterpart, Little HERMES is designed for teleoperation, with an operator suited up in a vest to control the robot’s actions.

“Balance feedback is a difficult thing to define because it’s something we do without thinking,” Kim says. “This is the first time balance feedback is properly defined for the dynamic actions. This will change how we control a teleoperated humanoid.”

Kim and Ramos will continue to work on developing a full-body humanoid with similar balance control, to one day be able to gallop through a disaster zone and rise up to push away barriers as part of rescue or salvage missions

“Now we can do heavy door opening or lifting or throwing heavy objects, with proper balance communication,” Kim says.

This research was supported, in part, by Hon Hai Precision Industry Co. Ltd. and Naver Labs Corporation.